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Abstract—Change detection in polarimetric SAR (POLSAR) 
images is an important topic. Three statistics are compared on 
both simulated and real data for their efficacy in change 
detection. The three statistics are the contrast ratio, the ellipticity 
and the Bartlett test. The relative performance for these three 
test statistics on the two simulations is dramatically different. The 
results are illustrated and explained. 
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I.  INTRODUCTION 
Polarimetric SAR (POLSAR) data contains both phase and 

amplitude information from radar returns transmitted in two 
different polarizations. The active nature of POLSAR means 
the sensor can collect information through cloud cover or bad 
weather at anytime, night-or-day. Change detection in multi-
temporal POLSAR images is an active area of research with 
applications in agriculture, resource assessment and target 
detection. 

The remainder of this paper is organized as follows: In 
section II, the POLSAR model is described and in section III, 
the three statistics are defined and discussed. In section IV, two 
simulations are described, one that is statistically ideal and 
another based on real data where a target is embedded in one of 
the images. The statistics are rank-ordered on performance in 
both simulations and these ranks change between the ideal and 
real simulations. Reasons for these differences are discussed. 
The conclusions are contained in section V. 

II. THE POLARIMETRIC SAR MODEL 
POLSAR images are constructed from complex radar 

returns acquired from a fully-polarimetric radar system. The 
four possible polar combinations of transmit-receive returns of 
the radar are: HH , HV , VH , and VV . For example, the 
complex number VH  represents the returned horizontally 
polarized signal from a vertically transmitted radar signal. The 
other variables are similarly defined. Under certain symmetry 
assumptions, the complex returns HV  and VH , are identical 
yielding a 3-D complex scattering vector:  

=x tVVHVHH ],2,[ .  (1) 

The pixel feature is the complex covariance matrix defined 
in (2), which is formed from the Hermitian outer product of this 

vector x . The resulting Hermitian positive-semidefinite matrix 
contains nine real independent components, which form the 
elements of a feature vector associated with each pixel. In 
practice, POLSAR images are filtered to reduce the speckle 
noise and ensure that covariance matrix is full rank. This 
filtering replaces each pixel with a weighted average of its 
neighboring pixels, where n  is the effective number of looks 
or independent samples. Naively, one can think of the 
covariance associated with each pixel as:  
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In practice, the speckle filtering plays an important role in the 
efficacy of the change detection. In this paper, a 5x5 speckle 
filter [1] was used to filter the pair of real images and a 5x5 
Box Filter was used to filter the statistically ideal images. 

The sample covariance has the complex Wishart distribution 
if one assumes the components of ix  are complex Gaussian 

random variates. Defining, =Σ= xnX ˆ ∑
=

∗
n

i

t
ii xx

1
 then 

),,(~ xC npWX Σ  where the distribution is defined as: 

 ])[exp(
)(

),,( 1 Xtr
n

X
npW xn

xp

pn

xC
−

−

Σ−
ΣΓ

=Σ  (3) 

and )1()(
1

2/)1( +−Γ=Γ ∏
=

− jnn
p

j

pp
p π . Thus, the pixel features 

of the filtered images are modeled as Wishart random 
variables. 

III. THREE CHANGE STATISTICS  
The first statistic is a generalization of the standard change 

of real covariance matrices derived originally by Wilks circa 
1932 [2, p. 292]. Here the covariance is complex. This case 
was analyzed in detail in [3] and its applications studied in [4]. 
This likelihood ratio test (LRT) statistic is derived from the 
Wishart probability density function (PDF) for the α -level 
test. If xΣ  and yΣ  represent the pixel covariance’s from the 
same pixel in both images, then this statistic studied here is: 

( ) ( )yavgxavgbT ΣΣ+ΣΣ= lnln          (4)  
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where ( ) 2/yxavg Σ+Σ=Σ . Intuitively, the dissimilarity (4) 
represents the divergence of two averaging methods - 
determinant of the arithmetic mean to the geometric mean of 
the determinants. Here this test is called the Bartlett test since 
he proposed the ratio of the arithmetic and geometric means of 
the sample variances as a robust test for the equality of two 
distributions - thus the name [5, p. 188]. Under the null 
hypothesis both images are identical, so 0=bT . The rejection 
region is thresholdTb > . 

The second statistic is called the Contrast Ratio and is 
defined using the Rayleigh Quotient. It is well known that the 
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xCxy . It is a measure of the change between the 
two images’ pixel covariance. So too is the inverse of the 
smallest eigenvalue denoted by 1

min
−λ . The images are identical 

under the null hypothesis, so all the eigenvalues should be one. 
The contrast ratio is defined as: 

)),ln(max( 1
minmax
−= λλcrT    (5) 

and the form of the rejection region is similar to bT . 

The third statistic is the ellipticity [2, p. 336], which is 
applied to the matrix Cxy . Here, one is testing if this quotient 
Cxy  is proportional to the identity matrix. Cxy  is also a 

positive definite Hermitian matrix since both xΣ  and yΣ  are. 
The form of the ellipticity applied here is given by: 
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where pii == 3,2,1,λ . The rejection region is the same for this 
test as well. 

IV. THE SIMULATIONS 
Two simulations were run to test the efficacy of these three 

statistics in detecting change between the pair of images. The 
first simulation generates two pairs of images, which have a 
sample covariance that is typical of trees – as extracted from an 
ESAR data set. The correlation of the background can be 
varied by using a convex combination of the background from 
one image and a second generated image with the same 
background. Mixed into the second image is a target 
covariance. These images are then just large test sets to 
estimate the detection probabilities for the three statistics. The 
second simulation involves taking a pair of multi-temporal L-
Band Images that have been registered and injecting (adding) a 
target grid into the second image. Then the probability of error 
can be estimated by varying the threshold to obtain a fixed α -
level test and obtaining the probability of detection on the grid 
of targets. In addition, the Expectation Maximization (EM) 
algorithm is applied to estimate the Bayes Error. These 
methods yield what seems to be contradictory results, in that 
the order of performance of these statistics is reversed. It is 

conjectured that the robustness of statistics to changes in the 
underlying distributions is the cause of this anomaly.  

A.  Simulated Background and Target 
The first simulation is purely computer generated 

hypothesis test between two covariance matrices. Under the 
null hypothesis, the covariance matrix is representative of a 
group of trees. The alternative hypothesis covariance is 
representative of a double-bounce structure. The correlated 
images were created by first generating two random copies of 
the first image and then mixing the first image into the second 
random copy. This mixing coefficient used in a convex 
combination is a measure of the correlation and was set at 0.2, 
0.5 and 0.8 to generate two images under the null hypothesis. 
To the correlated second image is added the target covariance 
as a convex combination. As the proportion of signal mixed 
into the second image goes from zero to one, the signal-to-
noise ratio (SNR) increases from zero to its maximum value. 
Both images are filtered using a simple 5x5 box filter or Daniel 
filter since there are no topographic variations in the images. 
Based on the null hypothesis, the threshold for a fixed false 
alarm rate (alpha level) of 0.001 is determined from the data 
and fixed as the SNR increases from zero to its maximum 
value. Figure 1 contains a plot of the probability of detection 
versus the proportion of mixed signal. 

 

Figure 1. Probability of Detection vs proportion of signal in the second image. 
The dotted curve is the ellipticity, the dash-dot curve is the Bartlett and the 

solid curve the contrast ratio. The three sets of currves are ordered right-to-left 
with correlation coefficients 0.2, 0.5, 0.8. 

Each of these statistics assumes that the generating 
mechanism results from complex Gaussian random vectors that 
produce the complex Wishart covariance samples. One could 
argue that the ellipticity is more sensitive since it is tuned to 
test the variation of the covariance of Cxy  from the identity 
matrix, whereas the Bartlett only compares the equality of any 
two matrices. Likewise, the contrast ratio makes use of only 
two of the eigenvalues of Cxy  and should be less sensitive to 
changes in the images. Although this is only an ad hoc heuristic 
argument, it is plausible if one ignores the robustness of these 
statistics to changes in the underlying assumptions and 



especially the pixel-to-pixel variation in the image, which is 
ignored by this statistical modeling. 

B. Real Background with Injected Target 
This simulation is more realistic since it uses registered L-

band repeat pass POLSAR image-pairs from the Glen Affric 
project [6]. A 512x512 image chip was taken from this data 
and into one chip, a grid of target covariance patches is added. 
Both images are then filtered using a 5x5 speckle filter for 
single look complex POLSAR images. The filtered target 
image is given in figure 2. 

 
Figure 2. Filtered POLSAR Span Image of the target patch grid. 

An estimate of the performance of each statistic can be found 
by a scheme in the spirit of [7], although the details and 
assumptions are different. The Bayes error for these statistics is 
found by using an EM Algorithm for a two-class mixture 
distribution, which assumes a Gamma PDF after taking the log 
of the statistic. One initializes the algorithm by choosing a 
rough estimate for the threshold given as the median plus a 
dispersion measure for the spread of the data function. This 
initialization also gives one a rough estimate for the a-prior 
probabilities since the data set has been partitioned about the 
threshold. One then estimates the parameters for the Gamma 
PDF for each class. At this point the EM algorithm is started 
and for this paper was iterated 10 to 40 times – yielding an 
estimate for the mixture distribution, including the a-priori and 
a-posteriori distributions. 

TABLE I.  BAYES ERROR FOR REAL DATA SIMULATION . 

Statistic Ellipticity Bartlett Contrast Ratio 

Bayes Error 0.07 0.04 0.04 

 
Plotting the PDF for each class times the a priori probabilities 
permits an estimate of the threshold that minimizes the total 

probability of error or Bayes error. Based on this threshold, one 
estimates the probabilities of error. The Bayes error for each 
statistic is given in table I. 

In addition, a trial-and-error threshold search on the 
detected image was done for each of the statistics. Since the 
target mask is known, both the probability of false alarm (PFA) 
and the probability of detection )( thresholdTP >  can be 
determined. For a PFA of 0.01 and 0.1 the probability of 
detection is shown in table II. The performance of these test 
statistics is the reverse of what was determined in the ideal 
simulation. This surprised the first author since it is 
inconsistent with the simulation results illustrated in figure 1. A 
heuristic explanation for this dramatic performance turnaround 
is based on the modeling assumptions. In an actual image, the 
expected covariance is no longer uniform from pixel-to-pixel. 
Not only do the pixels vary in intensity, but also in their 
covariance structure. The estimation of the pixel covariance is 
essential to all the change statistics; however, the robustness of 
each change statistic to variations in the covariance estimates is 
different.  

TABLE II.  DETECTION PROBABILITY FOR FIXED FALSE ALARM RATE. 

Statistic Threshold PFA P(detect) 

Ellipticity 1.45 0.1 0.54 

Ellipticity 2.45 0.01 0.14 

Bartlett 1.02 0.1 0.75 

Bartlett 1.8 0.01 0.35 

Contrast Ratio 1.85 0.1 0.80 

Contrast Ratio 2.65 0.01 0.44 
 
The derivation of the Bartlett test [3], depends upon the LRT 
and any variation in the estimate of the covariance matrix 
would appear in the exponential term. So too with the 
ellipticity, which is also a LRT. Therefore, the total variation 
induced by the image-to-image variation and the pixel-to-pixel 
variation appears indirectly in the statistics through the 
exponential term. However, the contrast ratio is only dependent 
upon the spectrum of Cxy  so there is no amplification of the 
variations via an exponential term. Hence, the contrast ratio is 
more robust to these variations, but is also a weaker test under 
ideal conditions, because it is not tuned to the underlying 
distributions.  

The target locations can be ascertained by using a clustering 
algorithm. One first creates a detected image where the pixel 
values are proportional to the a posteriori probabilities. Scaling 
the X-Y coordinates of the image to one creates a decision 
space inside a 3D unit cube. The Z-component represents the a-
posterior decision probabilities and all the values less than say 
0.75 are mapped to zero. The targets appear as cluster near Z=1 
plane of the cube. Clustering in this three dimensional space 
requires an unsupervised algorithm that not only clusters, but 
also scales the feature space. One algorithm that does both is 



the Simultaneous Clustering and Attribute Discrimination 
algorithm (SCAD2) [8]. A modified version of this is used to 
cluster the decision space and then the targets are selected from 
these clusters using a concentration measure, which 
differentiates between clusters representing dispersed speckle 
responses and clusters representing concentrated target clusters. 
This measure is a ratio of the inlier cardinality (points with 
membership > 0.75) to the cardinality of the cluster. Figure 3 
shows eight clusters searching for targets in a decision space 
containing four target clusters. 

 

Figure 3. Unsupervised clustering of the decision space with four targets. 

The first four clusters represent background regions and the 
second four clusters represent targets plus some background. 
The concentration measure easily differentiates the four 
clusters between targets and background. Note that first cluster 
(black color) represents the decision points that have be 
mapped to zero or taken out of consideration. Table III gives 
the true and actual location of the cluster centers that pass the 
concentration criterion. 

TABLE III.  TARGET CLUSTER LOCATION 

True  

X-cood 

Cluster 

X-Coord  

True  

Y-cood 

Cluster  

Y-cood 

Probability  
of 

Detection 

272 274.708 272 275.231 0.853 

272 278.039 400 404.324 0.884 

400 402.560 272 271.673 0.890 

400 401.343 400 403.824 0.917 

V. CONCLUSIONS 
POLSAR images are constructed from complex radar 

returns and multi-temporal pairs of these images are used to 
detect changes in the ground conditions. Three test statistics 
were studied: the ellipticity, the Bartlett test and the contrast 
ratio. It was shown that under ideal conditions where the 
distributions match those assumed in the statistic’s derivation, 
the test statistics are listed in decreasing order of performance. 
However, when real data is used and the target is injected into 
one image, the order of performance reverses. It is conjectured 
that the first two tests, which depend upon the Wishart 
distribution, are sensitive to the assumptions made on the 
underlying distribution of the simulation and to the consistency 
of this assumptions from pixel-to-pixel. The contrast ratio, 
which is not directly dependent on the distribution of the 
covariance estimates for each pixel, is more robust to variations 
in the covariance estimates. Location of the detected targets 
within the image is determined by using a modified version of 
a clustering algorithm that determines not only the location of 
the clusters, but also learns the scale of the individual clusters 
appearing in the decision space. The concentration of the 
clusters may then be used to differentiate between interesting 
targets and background information. These results are a work in 
progress and more simulation and verification are planned to 
better quantify these results. 
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